Discriminative Learning for Minimum Error Classification
نویسندگان
چکیده
Recently, due to the advent of artificial neural networks and learning vector quantizers, there is a resurgent interest in reexamining the classical techniques of discriminant analysis to suit the new classifier structures. One of the particular problems of interest is minimum error classification in which the misclassification probability is to be minimized based on a given set of training samples. In this paper, we propose a new formulation for the minimum error classification problem, together with a fundamental technique for designing a classifier that approaches the objective of minimum classification error in a more direct manner than traditional methods. We contrast the new method to several traditional classifier designs in typical experiments to demonstrate the superiority of the new learning formulation. The method can be applied to other classifier structures as well. Experimental results pertaining to a speech recognition task are also provided to show the effectiveness of the new technique.
منابع مشابه
دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملSimultaneous Design of Feature Extractor and Pattern Classifer Using the Minimum Classification Error Training Algorithm
~ Recently, a minimum classification error training algorithm has been proposed for minimizing the misclassification probability based on a given set of training samples using a generalized probabilistic descent method. This algorithm is a type of discriminative learning algorithm, but it approaches the objective of minimum classification error in a more direct manner than the conventional disc...
متن کاملSimultaneous Design of Feature Extractor and Pattern Classifier Using the Minimum Classification Error Training Algorithm
~ Recently, a minimum classification error training algorithm has been proposed for minimizing the misclassification probability based on a given set of training samples using a generalized probabilistic descent method. This algorithm is a type of discriminative learning algorithm. but it approaches the objective of nlininlumclassification error in a more direct manner than the conventional dis...
متن کاملUse of incrementally regulated discriminative margins in MCE training for speech recognition
In this paper, we report our recent development of a novel discriminative learning technique which embeds the concept of discriminative margin into the well established minimum classification error (MCE) method. The idea is to impose an incrementally adjusted “margin” in the loss function of MCE algorithm so that not only error rates are minimized but also discrimination “robustness” between tr...
متن کاملDiscriminative Training and Support V Language Call Ro
In natural language call routing, callers are routed to desired departments based on natural spoken responses to an open-ended “How may I direct your call?” prompt. Natural language call classification can be performed using support vector machines (SVMs) or the popular vector-based model used in information retrieval. We recently demonstrate how discriminative training is powerful to improve a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009